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* Child development is influenced by multiple different Study Population: 36,674 children attending a local authority or e ,, )
contexts such as school and neighbourhoods!. Therefore, partnership preschool in Glasgow (Fig 1) between 2010 and 2017. SeemgaVl O TR -
variation in development can be attributed to individual Outcome: The main outcome was total social, emotional and Soh \“’g T . 4 ﬁ 57 /-
and contextual differences. behavioural difficulties measured through the Strengths and NG ey e ey | N e Voo P
Difficulties Questionnaire> (SDQ) which ranged from 0-40. =Nl e Mot ST e =
Observations taken from individuals in the same cluster Data Structure: In a cross-classified structure (Fig 2), at each year, R N - :& Tl - e 2 oA
are expected to be more similar than those taken from children were nested within school and nested in small areas defined g G R ///w Sl ws T e BN ?
individuals in different clusters. The similarities between by CATTs (consistent areas through time) to overcome boundary el P ’/Xj B & i W)
subjects in the same cluster violate the assumption of changes® e gl & xj,, S 2.
independence described in the standard linear model, Statistical Methods: The SDQ was assumed to have a zero-inflated & . JSER %% bt Yo '
requiring a different approach. negative binomial distribution which was modelled by fitting & TR N el
generalised linear mixed spatial convolution model as specified by A= i 1
The multilevel model is also known as a mixed effect, Barry et al* CE ¢
variance components, random effect, hierarchical or For years ¢t,.,8 with, i...36674 individuals, in k,...181 preschools and
nested model. Multilevel modelling explicitly allows the J,-»1120 CATT areas:
ff f multiple contex modelled at the same T 1- Fig 1. Map of Glasgow City Council*
© ects ot mult pre €O texts to be mode . . — response distribution: Y. ~ ZINB(A, 6) where A= r(1-p) (1) Y p of Glasg 4
time and the estimation of context specific effects via a p
small number of parameters using the covariance — zero component: logit(6) = y, (2)
structure of random effects. — count component: 10g(2;xc) = B1SeX;jxc + BoAge;jre + BsDeprivation;jy, + ByYear, + u; + v + ay + 6, (3)
| | | u ~ MVN(0, Q;4r); where Qp4p = 72(D — W)™1(4); ~N(0,07) (5); ~N(0,02) (6); 6:~N(0,Qp) (7)
Previous research using the population mental health
. . . 2
dataset _Chlld in Mental Health ((_:thE) has shown that * Spatial autocorrelation is modelled through the random effect u which is given a conditional
atter ad]u.stment for d.emographl-cs, there was electoral autoregressive (CAR) distribution where D is the number of neighbours and W is a weighted Preschool Area
g.eo.grap.hlcal clustering of _ hkely. mental  health adjacency matrix (eq. 4). This allows the j*" region to deviate from the overall log mean, and \/
dllfﬁfultlles f((;r If)EGISChOOI bciuldrenz OTO ‘;chezoil;rtheast is common to all individuals within the region.
electoral wards of Glasgow between 0 . _ _ _
5 * Unstructured spatial effects (eq. 5) and a random intercept pre-school establishment (eq. 6) Child
were modelled through independent and identically distributed Gaussian random effects. t
 Temporal correlation was included through a growth curve random intercept with the Year
|
Alm S covariance modelled using a random walk of order 1 (eq. 7).
 Random effects were incrementally added to the model and model fit was assessed using Fig 2. Data Structure
Using ChiME data, this study aimed to investigate: DIC. Eq. 3 shows the linear predictor for the model with the lowest DIC. The Intra-Class
1) How does preschool mental health vary over the correlation Coefficient (ICC) was measured using the Nakagawa et al log-normal [CCnp_in = & —_(8)
years? approximation approach’ example shown for preschool in eq. 8. 04+05+ QAR+ Qe+ In(1+5+D)
2) Is the spatial pattern evident at lower spatial scales? Following a Bayesian approach, where random effect precisions (where precision p= 1/variance) were treated as hyperparameters with

3) What is the magnitude of the contextual effect for uninformative prior distributions the analyses were carried out in R version 4.1.08 and INLA”® .
preschool and area on individual outcomes?

Re S ults Table 1. Summary of fitted values (on the response scale)
e Overall, spatial autocorrelation measured Fixed Effects 959, CI

Fig 4. Posterior mean temporal effect with 95% CI

through Moran’s I was stronger at CATT level =
(1=0.11, p<0.001) than ward level (1=0.03, Intercept 485 (4-56-5.04)
p=0.28) Sex Male 1.37 (1.34-1.40) S

» Table 1 shows total SDQ scores were higher in Age (years) 4.5-5 0.89 (0.87-0.90) .
boys, and increased with age and deprivation. 5-5.5 1.18 (1.13- 1.24) ”

* Figure 3 shows the distribution of the posterior 5.5+ 1.83 (1.50- 2.26) S
precision of the random effects. Deprivation quintile 4 1.09 (1.05-1.13) "

* Overall, the general contextual effect of area, L | | | | | | |
school and year were low. Table 2 shows the 3 1.15 (1.11-1.20) 2010 2011 2012 2013 2014 2015 2016 2017
correlation between children in the same 2 1.19 (1.15 -1.24)
context. 1=20% MOST 1.21 (1.16- 1.26) Fig 5. Posterior mean spatial effects

* The temporal effect shown is shown Figure 4 deprived

* Figure 5 shows combined structured and
unstructured effects that was common to all Fig 3. Posterior density of the random effect precisions 010

ears.
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